

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 187-189

Tetrahedron Letters

Chemical transformation of inocalophyllins, preparation of novel pyranocoumarines inocalocyclides

Ya-Ching Shen,* Li-Tang Wang and Ching-Yu Chen

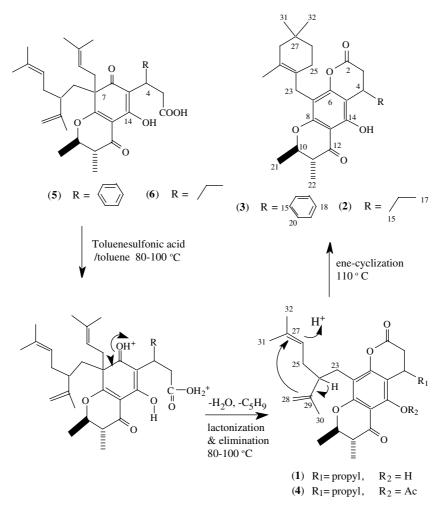
Institute of Marine Resources, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 80424, Taiwan, ROC

Received 6 August 2003; revised 26 September 2003; accepted 17 October 2003

Abstract—Lactonization of inocalophyllins A (5) and B (6) with toluenesulfonic acid has yielded four novel pyranocoumarins, designated inocalocyclides A–D (1–4). This reaction involved a rare elimination of an isoprene unit and an ene cyclization. © 2003 Elsevier Ltd. All rights reserved.

Calanolides and inophyllums are novel non-nucleoside inhibitors of HIV type 1 reverse transcriptase.¹⁻⁴ Calanolides may be promising candidates for combination therapy with either the nucleoside AZT and/or protease inhibitors in HIV patients. It is quite urgent to search for a renewable and economic source of calanolides. Inocalophyllins A (5) and B (6) were two novel pyranocoumarins recently isolated from the seeds of Calophyllum inophyllum (Hypericaceae).^{5,6} They represented a new class of pyranocoumarin derivatives, which contain an isoprene unit and a monoterpene group at C-8a position of the unique pyranocoumarin ring system. Lactonization at C-2 carboxylic acid would provide compounds whose structures are more similar to calanolides. In our attempt to modify the structures of the natural products 5 and 6, we unexpectedly discovered some interesting reaction products 1–4 by lactonization of 5 and 6.

Treatment of **6** with toluenesulfonic acid in toluene at 80 °C for 5 h provided inocalocyclide A (1) in 30% yield (Scheme 1). However, the reaction products would be compounds **2** and **3**, respectively, from **5** and **6** at 110 °C. The former reaction involved elimination of 3,3dimethylpropenyl moiety at C-7 and lactonization between C-2 acidic group and C-6 protonated hydroxyl group. The latter reaction is an ene cyclization between double bonds of C-27 and C-28. Upon acetylation, inocalocyclide A (1) yielded 4.¹⁰ Compounds 1–4 represent a new class of prenylated pyranocoumarins having a monoterpene side chain at C-7.


Inocalocyclide A (1),⁷ $[\alpha]_D - 12^\circ$ (CH₂Cl₂), was obtained as an amorphous solid. The molecular formula of 1 $(C_{27}H_{36}O_5)$ was deduced from a quasimolecular ion at m/z 441 in the FABMS and ¹³C NMR spectra. The ¹H NMR spectrum displayed signals for a phenolic proton (δ 12.2s), three olefinic protons (δ 5.05, 4.42, 4.57), three olefinic methyl singlets (δ 1.70, 1.54, and 1.66), and two methyl doublets at δ 1.21 (Me-22) and at δ 1.50 (Me-21). The ¹³C NMR spectrum of 1 exhibited signals for a conjugated ketone carbonyl (δ 200.1), a lactone carbonyl (δ 167.4), and 10 sp² carbons, of which three are oxygenated quarternaries (δ 156.6, 158.6, 157.4). The structure of 1 was deduced using COSY, HSOC, and HMBC experiments. (Fig. 1) The H-4 (δ 3.34) was correlated with carbons at δ 106.9 (C-5), 156.6 (C-6). In the meanwhile, the methylene protons at δ 2.65 (C-23) were correlated to C-6 and C-7 (δ 108.2). The COSY correlations between H-23/H-24, H-24/H-25, and H-25/H-26 as well as HMBC correlations between C-26/ H-31, H-32, and H-24 in addition to H-24/C-28 and C-30 allowed the assignment of the monoterpene side chain at C-7.

Inocalocyclide B (2),⁸ $[\alpha]_{\rm D}$ –18.5° (CH₂Cl₂), had the same molecular formula C₂₇H₃₆O₅ as **1**. The ¹H and ¹³C NMR spectral data of **2** resembled those of **1** except for the absence of signals attributable to the olefinic methylene and methine at C-26 and C-28, respectively. Detailed analysis of the HMBC data revealed that **2** contains a 2,4,4-trimethyl cyclohexene moiety. The

Keywords: pyranocoumarins; inocalocyclides; lactonization; ene cyclization.

^{*} Corresponding author. Tel.: +886-7-5252000; fax: +886-7-5255020; e-mail: ycshen@mail.nsysu.edu.tw

^{0040-4039/\$ -} see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.10.138

Scheme 1. Chemical transformation of 5 and 6 to inocalocyclides (1-4).

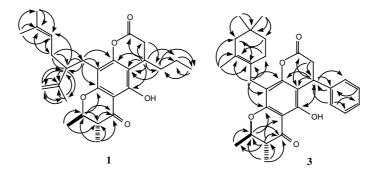


Figure 1. HMBC of inocalocyclides A (1) and C (3).

methyl singlet at δ 1.78 (Me-30) was correlated to the olefinic carbons at δ 126.1, 125.5 (C-24, 29), and the methylene carbon at δ 45.8 (C-28), which was also correlated with the methyl protons at δ 0.80 (H-31). All the other spectral data of **2** agreed with the structural assignment of inocalocyclide B.

Inocalocyclide C (3),⁹ $[\alpha]_D$ –60° (CH₂Cl₂), was obtained as an amorphous solid. The ¹H and ¹³C NMR data of 3

were superimposable with those of **2** except that **3** contained an extra phenyl moiety (δ 7.18–7.28) and corresponding carbon signals (δ 140.9s, 126.7d, 127.3d, 128.9d), suggesting that it was a close analogue of **2**. The structure of **3** was confirmed by HMBC experiment (Fig. 1), in which the H-4 (δ 4.66) was correlated with carbons at δ 166.4 (C-2), 105.1 (C-5), 106.9 (C-15), 126.7 (C-16), and 156.8 (C-14). Furthermore, HMBC correlations in the 2,4,4-trimethyl cyclohexene moiety were also observed. The similar chemical shifts, coupling constants, and specific rotation of 1–4 were suggestive of their identical stereochemistry.

Acknowledgements

This research was supported by the National Science Council, Republic of China (grant NSC 92-2320-B-110-011).

References and Notes

- 1. Yang, S. S.; Cragg, G. M.; Newman, D. J.; Bader, J. P. J. Nat. Prod. 2001, 64, 265-277.
- 2. Matthee, G.; Wright, A. D.; Konig, G. M. Planta Med. 1999, 65, 493-506.
- 3. Vlietinck, A. J.; De Bruyne, T.; Apers, S.; Pieters, L. V. Planta Med. 1998, 64, 97-109.
- 4. Spino, C.; Dodier, M.; Sotheeswaran, S. Bioorg. Med. Chem. Lett. 1998, 8, 3475-3478.
- 5. Chiu N. Y.; Chang K. H., The Illustrated Medicinal Plants of Taiwan; Institute of Chinese Pharmaceutical Science, China Medical College, Taichung, Taiwan, 1995, Vol. 4, p 117.
- 6. Shen, Y. C.; Hung, M. C.; Wang, L. T.; Chen, C. Y.
- *Chem. Pharm. Bull.* **2003**, *51*, 802–806. Inocalocyclide A (1): $[\alpha]_{D}^{25}$ –12° (*c* 1.0, CH₂Cl₂); UV λ_{max} (MeOH) nm: 240, 276, 285, 303, 332; IR (neat) v_{max} 3058, 7. 1779, 1633, 1449, 1378, 1269 cm⁻¹; FABMS m/z: 441 [M+H]⁺; EIMS m/z (rel int) 440 [M]⁺, 317, 275, 233, 219, 217, 177, 123, 109, 81, 69; ¹H NMR (CDCl₃, 300 MHz): δ 2.50 (1H, m, H-3A), 2.70 (1H, m, H-3B), 3.34 (1H, m, H-4), 4.15 (1H, m, H-10), 2.55 (1H, m, H-11), 1.45 (1H, m, H-15), 1.50 (1H, m, H-16), 0.88 (t, J = 6.9 Hz, H-17), 1.48 (3H, d, J = 6.3 Hz, H-21), 1.21 (1H, d, J = 6.9 Hz, H-22),2.65 (2H, m, H-23), 2.35 (1H, m, H-24), 2.10 (2H, m, H-25), 5.05 (1H, t, J = 8 Hz, H-26), 4.42 (1H, d, J = 2.1 Hz, H-28A), 4.57 (1H, s, H-28B), 1.70 (3H, s, H-30), 1.54 (3H, s, H-31), 1.66 (3H, s, H-32), 12.2 (1H, s, OH); ¹³C NMR (CDCl₃, 75 MHz): δ 167.4 (s, C-2), 34.1 (t, C-3), 28.2 (d, C-4), 106.9 (s, C-5), 156.6 (s, C-6), 108.2 (s, C-7), 158.6 (s, C-8), 79.0 (d, C-10), 46.1 (d, C-11), 200.1 (s, C-12), 103.9 (s, C-13), 157.4 (s, C-14), 36.4 (t, C-15), 19.8 (t, C-16), 14.0 (q, C-17), 19.6 (q, C-21), 10.0 (q, C-22), 26.7 (t, C-23), 47.7 (d, C-24), 31.4 (t, C-25), 123.1 (d, C-26), 131.1 (s, C-27), 111.2 (t, C-28), 147.7 (s, C-29), 18.7 (q, C-30), 17.9 (q, C-31), 25.7 (q, C-32).
- 8. Inocalocyclide B (2): $[\alpha]_{D}^{25}$ -18.5° (*c* 1.0, CH₂Cl₂); UV λ_{max} (MeOH) nm: 257, 268, 300, 350; IR (neat) v_{max} 1779, 1634, 1450, 1381, 737 cm⁻¹; EIMS m/z (rel int) 440 [M]⁺, 372, 371, 331, 318, 317, 275, 233, 219, 217, 177, 123, 109, 84, 81, 69; ¹H NMR (CDCl₃, 300 MHz): δ 2.84 (1H, m, H-3A), 2.78 (1H, m, H-3B), 3.37 (1H, m, H-4), 4.19 (1H,

m, H-10), 2.58 (1H, m, H-11), 1.22 (1H, m, H-15), 1.21 (1H, m, H-16), 0.89 (t, J = 7.2 Hz, H-17), 1.50 (3H, d, J = 6.6 Hz, H-21), 1.20 (1H, d, J = 6.9 Hz, H-22), 3.48 (1H, s, H-23), 1.78 (2H, m, H-25), 1.31 (2H, m, H-26), 1.74 (2H, s, H-28), 1.78 (3H, s, H-30), 0.80 (3H, s, H-31), 0.81 (3H, s, H-32), 12.3 (1H, s, OH); ¹³C NMR (CDCl₃, 75 MHz): δ 166.7 (s, C-2), 34.1 (t, C-3), 29.1 (d, C-4), 111.1 (s, C-5), 156.8 (s, C-6), 113.8 (s, C-7), 158.9 (s, C-8), 79.4 (d, C-10), 46.6 (d, C-11), 199.8 (s, C-12), 108.1 (s, 13), 156.8 (s, C-14), 35.9 (t, C-15), 20.0 (t, C-16), 14.1 (q, C-17), 19.6 (q, C-21), 10.1 (q, C-22), 25.6 (t, C-23), 126.1 (d, C-24), 25.9 (t, C-25), 35.4 (d, C-26), 29.1 (s, C-27), 45.8

- (d, C-24), 2617 (d, C-29), 18.9 (q, C-30), 28.1 (q, C-31, 32). (t, C-28), 125.5 (s, C-29), 18.9 (q, C-30), 28.1 (q, C-31, 32). 9. Inocalocyclide C (**3**): $[\alpha]_{D}^{25}$ -60° (c 1.0, CH₂Cl₂); UV λ_{max} (MeOH) nm: 253, 263, 299, 347; IR (neat) ν_{max} 3404, 3054, 1778, 1634, 1428, 896, 738 cm⁻¹; FABMS *m/z*: [M+H]+; EIMS *m*/*z* (rel int) 474 [M]⁺, 352, 351, 338, 310, 309, 253, 136, 121, 115, 93, 77; ¹H NMR (CDCl₃, 300 MHz): δ 2.96 (1H, m, H-3A), 3.02 (1H, m, H-3B), 4.66 (1H, dd, J = 6.6),2.0 Hz, H-4), 4.19 (1H, m, H-10), 2.61 (1H, m, H-11), 7.18 (2H, overlap, H-16, 20), 7.28 (2H, overlap, H-17, 19), 7.26 (1H, overlap, H-18), 1.53 (3H, d, J = 6.3 Hz, H-21), 1.18 (1H, d, J = 6.9 Hz, H-22), 3.48 (2H, m, H-23), 1.83 (2H, m)m, H-25), 1.31 (1H, m, H-26), 1.80 (2H, s, H-28), 1.83 (3H, s, H-30), 0.85 (6H, s, H-31, 32), 12.4 (1H, s, OH); ¹³C NMR (CDCl₃, 75 MHz): δ 166.4 (s, C-2), 36.5 (t, C-3), 34.1 (d, C-4), 105.1 (s, C-5), 157.5 (s, C-6), 108.2 (s, C-7), 159.2 (s, C-8), 79.2 (d, C-10), 46.0 (d, C-11), 200.1 (s, C-12), 104.1 (s, C-13), 156.8 (s, C-14), 140.9 (s, C-15), 126.7 (d, C-16), 128.9 (d, C-17), 127.3 (d, C-18), 128.9 (d, C-19), 126.7 (d, C-20), 19.6 (q, C-21), 10.1 (q, C-22), 25.5 (t, C-23), 125.9 (d, C-24), 25.9 (t, C-25), 35.9 (d, C-26), 29.2 (s, C-27), 46.6 (t, C-28), 125.4 (s, C-29), 19.7 (q,
- C-30), 28.0 (q, C-31, 32). 10. Inocalocyclide D (4): $[\alpha]_{D}^{25}$ -15.4° (c 1.0, CH₂Cl₂); IR (neat) v_{max} 1776, 1685, 1606, 1456, 1374 cm⁻¹; EIMS m/z(rel int) 482 [M]⁺, 440, 331, 318, 317, 275, 233, 219, 217, 177, 123, 109, 84, 69; ¹H NMR (CDCl₃, 300 MHz): δ 2,62 (1H, m, H-3A), 2.80 (1H, m, H-3B), 3.10 (1H, m, H-4), 4.20 (1H, m, H-10), 2.48 (1H, m, H-11), 1.45 (2H, m, H-15, 16), 0.88 (t, J = 7.0 Hz, H-17), 1.50 (3H, d, J = 6.0 Hz, H-21), 1.15 (1H, d, J = 6.7 Hz, H-22), 2.75 (2H, m, H-23), 2.39 (1H, m, H-24), 2.10 (2H, t, J = 6.5 Hz, H-25), 5.06 (1H, dd, J = 6.6, 6.5 Hz, H-26), 4.44 (1H, s, H-28A), 4.60 (1H, s, H-28B), 1.72 (3H, s, H-30), 1.56 (3H, s, H-31), 1.66 (3H, s, H-32), 2.39 (3H, s, OAc); ¹³C NMR (CDCl₃, 75 MHz): δ 166.8 (s, C-2), 33.9 (t, C-3), 29.4 (d, C-4), 114.2 (s, C-5), 159.6 (s, C-6), 116.3 (s, C-7), 159.8 (s, C-8), 78.9 (d, C-10), 47.1 (d, C-11), 192.7 (s, C-12), 109.4 (s, 13), 154.3 (d, C-14), 36.2 (t, C-15), 19.7 (d, C-16), 13.8 (q, C-17), 19.7 (q, C-21), 10.2 (q, C-22), 27.2 (t, C-23), 47.5 (d, C-24), 31.5 (t, C-25), 123.0 (d, C-26), 132.0 (s, C-27), 111.3 (t, C-28), 147.5 (s, C-29), 18.7 (q, C-30), 17.9 (q, C-31), 25.8 (q, C-32), 21.1 (q, OCOCH₃), 169.3 (s, OCOCH₃).